Naval Research Laboratory

Yashington, DC 20375-5000

NRL Report 9131

A Method for Automatically Translating
Trace Specifications into Prolog

C. A. MEADOWS

Computer Science and Systems Branch
Information Technology Division

September 30, 1988

Approved for public release; distribution unlimited.

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

1a. REPORT SECURITY CLASSIFICATION
UNCLASSIFIED

1b. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

Approved for public release; distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S)
NRI Report 9131

5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OF;FICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(if applicable)
Naval Research Laborato:
y Code 5593
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
Washington, DC 20375-5000
8a. NAME OF FUNDING 7 SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION
Office of Naval Research

(if applicable)

8c. ADDRESS (City, State, and ZIP Code)

Arlington, VA 22217-5000

10. SOURCE OF FUNDING NUMBERS

WORK UNIT
ACCESSION NO.

TASK

PROGRAM PROJECT
NO. NO.

ELEMENT NO.

1

. TITLE (Include Security Classification)

A Method for Automatically Translating Trace Specifications into Prolog

. PERSONAL AUTHOR(S)
Meadows, C.A.

13a. TYPE OF REPORT 13b. TIME COVERED

14. DATE OF REPORT (Year, Month, Day) |15. PAGE COUNT

Interim FrOM __10/85 10 10/87 1988 September 30 41
16. SUPPLEMENTARY NOTATION
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Automatic implementation Prolog

‘Formal specification
Rapid prototyping

Logic programming

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

The trace method of software specification provides unambiguous, nonprocedural program specifications that are
subject to rigorous proof techniques. The nonprocedural property makes it easier for a programmer to develop an
implementation without being overly influenced by the form the specification takes. However, this same nonprocedural
property often makes it difficult for programmers to interpret trace specifications or for users to predict the results of the
specifications they design. This disadvantage can be overcome by a rapid prototyping system that enables programmers
and specification writers to immediately check the exact requirements of a given specification. Such a prototyping sys-
tem should be able to take a given trace specification and automatically translate it into executable code that satisfies the
requirements of the specification. In this report we present an algorithm for translating specifications into Prolog and a
method for formulating specifications so that the algorithm always produces complete programs. Therefore a program
thus produced will eventually yield an answer to any query concerning the value or legality of any given trace or the
equivalence of any two given traces. We also provide a proof that this property holds.

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT
CJuncLassiFteD/uNUMITED £ SAME AS RPT.

[DTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL
Catherine A. Meadows

22¢c. OFFICE SYMBOL
Code 5593

22b. TELEPHONE (include Area Code)
(202) 767-3490

DD Form 1473, JUN 86

Previous editions are obsolete.

SECURITY CLASSIFICATION OF THIS PAGE

S/N 0102-LF-014-6603

i

10.

11.

12.

CONTENTS

INTRODUCTION ...t e et 1
DESCRIPTION OF THE TRACE SPECIFICATION METHODc.ccccvvvneenn.... 1
DESCRIPTION OF PROLOGocuiiiiiiiiiiiiiiiiiie e 3
SOME PROBLEMS WITH INCOMPLETENESS IN PROLOG TRANSLATIONS

OF TRACE SPECIFICATIONS ...ttt 4
HOFFMAN’S HEURISTIC FOR TRACE SPECIFICATIONSccocovvvniiiinaennenn.. 8
A GRAMMAR FOR TRANSLATABLE TRACE SPECIFICATIONSccccveuuan... 9
DESCRIPTION OF THE TRANSLATION ALGORITHMcccccooiiiviinainnn. 18
PROOF OF TERMINATION OF TRANSLATED PROGRAMSc.ccuvivniveinaannnn, 24
8.1 Definition of Prolog Grammarc..cc.eeuiiniuiiniiniiiiieee e, 24
8.2 Termination Proofc.oiiiiiiiiiiiiiiiii e, 29
SOUNDNESS OF NEGATIONc.oiiiiiiiiiiiiiieiieiiie e e e 34
CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORKcc.oceuvvennn.... 36
ACKNOWLEDGMENTS ...t 37
REFERENCES ... e 37

iii

A METHOD FOR AUTOMATICALLY TRANSLATING
TRACE SPECIFICATIONS INTO PROLOG

1. INTRODUCTION

The trace method of software specification [1,2] provides unambiguous, nonprocedural program
specifications that are subject to rigorous proof techniques. The nonprocedural property makes it
easier for a programmer to develop an implementation without being overly influenced by the form
the specification takes. However, this same nonprocedural property often makes it difficult for pro-
grammers to interpret trace specifications or for users to predict the results of the specifications they
design.

This disadvantage can be overcome by a rapid prototyping system [3] that enables programmers
and specification writers to immediately check the exact requirements of a given specification. Such a
prototyping system should be able to take a given trace specification and automatically translate it into
executable code that satisfies the requirements of the specification. A user can then run the resulting
program and determine whether or not the specification actually requires what the user had in mind.

In their report Executing Trace Specifications Using Prolog, McLean, Weiss, and Landwehr [4]
discuss several possible target languages for such an automatic translator. They decide on Prolog [5]
as the most likely candidate, given the nonprocedural nature of its syntax. However, Prolog’s depen-
dence on depth-first search leads in many cases to logically incomplete programs, that is, programs
that fail to return an answer to a query even though one exists. McLean et al. address this problem
in their report and suggest that it can be solved by formulating the trace specification in such a way
that the Prolog translation is always complete. They also present some suggestions for such formula-
tions.

In this report we present a method of formulating trace specifications based on the work of
Hoffman [6,7] and an algorithm for translating such specifications into complete and correct Prolog
code. This algorithm has been implemented in the string manipulation language Icon [8]. We also
present a proof that the algorithm always produces complete programs, in the sense that a program
thus produced will eventually yield an answer to any query concerning the value or legality of any
given trace or the equivalence of any two given traces.

2. DESCRIPTION OF THE TRACE SPECIFICATION METHOD

The trace specification method describes the behavior of a software module in terms of a
sequence or trace of procedure and function calls and return values from these calls. The designer of
a trace specification must supply three things. First, he or she must describe the procedure and func-
tion calls in terms of their names, parameter types, and return value types, if any. These are given in
sentences of the form

(1) name: param_type,...,param_type -> return_value.

Manuscript approved April 4, 1988.

C. A. MEADOWS

Second, the designer must specify which traces are legal, that is, which sequences of procedure and
function calls the module wiil accept. This is done by writing sentences of the form

(2) Conditions — L(T).

Finally, the designer must describe the output of a legal trace ending in a function call by supplying
sentences of the form

(3) Conditions — V(T) = value.

To make the designer’s task easier, a notion of equivalence is also provided. Two traces are
equivalent if they always agree on legality and return value with respect to future program behavior.
Thus the designer can also supply sentences of the form

(4) Conditions — T = T,.

Two or more traces are concatenated by the use of the dot (.). That is, trace T, followed by T,
is written as T;.T,.

We give an example of a specification for a table lookup program below:*
Syntax:

Insert: entry
Delete:

Left:

Right:

Current: --> entry

Legality:

(1) L(T) — L(T.insert(a))
(2) L(T) — L(T.Insert(a).Left)

Equivalence:

(3) T.Insert(a).Current = T.Insert(a)

(4) T.Insert(a).Delete = T

(5) T.Insert(a).Left.Right = T.Insert(a)

(6) T.Insert(al).Left.Insert(a2) = T.Insert(a2).Insert(al).Left

Value:
(7) L(T) — V(T.Insert(a).Current) = a.

One determines the value of a legal trace T.Current by manipulating T by the use of Axioms (3)
through (7) until a trace ending in an insert call is obtained. For example,

Insert(1).Left.Insert(2).Right.Current = Insert(2).Insert(1).Left.Right.Current (by Axiom (6))
Insert(2).Insert(1).Left.Right.Current = Insert(2).Insert(1).Current (by Axiom (5))
V(Insert(2).Insert(1).Current) = 1 (by Axiom (7)).

*This specification is due to Jonathan Hilliar.

NRL REPORT 9131

3. DESCRIPTION OF PROLOG

A line of code in Prolog is either a clause of the form

Pt t,. . ..t0),

where P is an n-place predicate and each t; is a term, or it is of the form

G:.— FI’FZ" . .,Fm

(that is, Gif F; & F, & ... & F)), where G is a predicate and the F,’s are predicates or negations of
predicates. The first kind of clauses are known as facts, and the second kind are known as rules.

Since we are dealing with lists of procedure and function calls, it is useful to know how to
represent lists in Prolog. A list of elements a; through a, in Prolog is written as [a;,...,a,]. A list
can also be written as [X|Y], where X is the first element, or head of the list, and Y is the rest, or
tail of the list. The empty list is represented by [].

A Prolog program works in the following way. A user queries a Prolog program by presenting
it a goal in the form of a predicate P(t;,...,t;) or the negation of such a predicate, or by giving a
sequence of such goals. Prolog tries to satisfy the goal P(t;,...,t,) by querying each fact and each
rule concerning P until it finds one that P satisfies. If it finds such a rule, it returns the answer
““yes.”” Otherwise it returns the answer ‘‘no.”” If some of the t;’s are variables that must be set to
constants in order for a rule or fact to be satisfied, Prolog also returns those constants. If queried

repeatedly (by a user typing ‘‘;’’), Prolog returns all the constants or variables it can find that make P
true.

bRl

Prolog checks whether or not a goal G satisfies a rule of the form

G:— FI’FZ" . .,Fn

in the following way. It attempts to satisfy each goal F; proceeding from left to right. If it satisfies
F; and cannot satisfy F;., it backtracks to F; and tries to satisfy it some other way. It continues
doing this until it either satisfies F;, or until it runs out of ways of satisfying F;.

For example, consider the following Prolog program designed to tell us whether or not a given
list has a number greater than 5 as a member:

member(X,[X]|L)).
member(X,[Y|L]) :- member(X,L).

ok(L) :- member(X,L), X > 5.

Suppose that Prolog is given the goal ok([2,1,6,3]). It first attempts to satisfy the goal
member(X,[2,1,6,3]). Invoking the first rule, it obtains X = 2. It then attempts to satisfy the goal 2
> 5 and fails. It then backtracks to the goal member(X,[2,1,6,3]). It invokes the second rule and so
now must satisfy the goal member(X,[1,6,3]). It does this by using the first rule and returns X = 1.
It now attempts to satisfy the goal 1 > 5 and fails. It backtracks again to the goal
member(X,[2,1,6,3]). It invokes the second rule and now must once again satisfy the goal
member(X,[1,6,3]). It has already exhausted all ways of using the first rule to do this and so invokes
the second rule. Now it must satisfy the goal member(X,[6,3]). It uses the first rule, and returns X
= 6. It attempts to satisfy the goal 6 > 5 and succeeds.

C. A. MEADOWS

It is clear that such a depth-first method of search necessarily allows incomplete programs, that
is, programs that fail to return answers to questions even though the answers exist. One source of
incompleteness lies in recursively defined predicates. For example, suppose that Prolog is given a
definition of the form

enemy(dog,cat).
enemy(A,B) :- enemy(B,A).

If presented with the goal enemy(cat,dog), Prolog uses the rule and the fact given it to produce the
answer yes. However, suppose that it is given the goal enemy(cat,horse). It then uses the rule and
attempts to satisfy the goal enemy(horse,cat). Since that goal is not satisfied by the fact
enemy(dog,cat), it uses the rule again and attempts to satisfy the goal enemy(cat,horse) and so on.
Thus, although the answer to the query ‘‘enemy(cat,horse)’” is ‘‘no’’ (since Prolog cannot show that
the answer is yes), Prolog cannot return any answer.

Another source of incompleteness lies in the way Prolog backtracks to a goal upon failure of the
goal following it and attempts to find all ways of satisfying the first goal until the second goal
succeeds. If the first goal can be satisfied in an infinite number of ways, none of which satisfy the
second goal, then Prolog again does not return an answer. For example, consider the following Pro-
log program defining a predicate called ‘‘append’’ that appends one list to another to form a third.

append([],L,L).
append([X|L1],L2,[X|L3]) :- append(L.1,1.2,L.3).

If we present the query append(X,[1,2,3],Y) to Prolog and repeat it, we get the infinite sequence of
answers

X =] Y =1[1,2,3]

X = [V1] Y =[V1,1,2,3]

X =[V2,Vl] Y = [V2,V1,1,2,3]
etc.,

Thus, if we define the predicate sublist(H,L) by

sublist(H,L) :-
append(X,H,T),
append(T,S,L).

we never get an answer to the query sublist([1,2,3],[4,5,6]), although, since Prolog is unable to come
up with a positive answer to the query, the answer is again no.

In the next section we discuss the bearing the incompleteness of Prolog has on the automatic
translation of trace specifications.

4. SOME PROBLEMS WITH INCOMPLETENESS IN PROLOG
TRANSLATIONS OF TRACE SPECIFICATIONS

In this section we consider the problems that arise when we attempt to guarantee completeness
of Prolog translations of trace specifications.

NRL REPORT 9131

Consider the table lookup specification presented in Section 2. It is an easy enough task to
translate each line of that specification into a line of Prolog code, as we see in the example below.*

(1) I(T) :- append([[insert,A]],S,T), I(S).

(2) I(T) :- append([left,[insert,A]],S,T), I(S).

(3) equiv(T,S) :- append([current,[insert,A]],R,T),
append([[insert,A]],R,S).

(4) equiv(T,S) :- append([delete,[insert,Al],S,T).

(5) equiv(T,S) :- append([right,left,[insert,A]],R,T),
append([[insert,A]],R,S).

(6) equiv(T,S) :- append(f[insert,A1},left,[insert,A2]],R,T),
append([[left,[insert,A2],[insert,A1]],R,S).

(7) v(T,A) :- append([current,[insert,A]],S,T), 1(T).

We also need code describing general properties of legality, equivalence, and value.

(8 KID.
) I(S) :- append(R,S,T), I(T).
(10) I(T) :- equiv(T,S), I(S).
(11) equiv(S,T) :- append(R1,R,S), append(R2,R,T), equiv(R1,R2).
(12) equiv(S,T) :- equiv(T,S).
(13) equiv(S,T) :- equiv(S,R), equiv(R,T).
(14) equiv(T,T).
(15) v(T,A) :- equiv(T,S), v(S,A).

However, numerous problems arise when we try to use the program thus generated. Some of the
problems arising from the use of the straightforward definition of equivalence have already been
described. Other problems arise from the use of Axiom (9), which says that if a trace S.R is legal,
then so is the trace S. For example, suppose that the program is given the illegal trace [left] and is
asked to rule on its legality. Axioms (1), (2), and (8) obviously do not apply, so it proceeds to
Axiom (9) and attempts to build a legal trace S such that T = S.R. The first solutions it comes up
with are T = [left] and R = []. It then attempts to satisfy the other axioms, fails, and once again
tries to satisfy Axiom (9). Thus it has entered an infinite loop.

This problem is relatively easy to correct; Axiom (9) can be omitted if the specification writer is
careful to write specifications so that any trace that is a prefix of a legal trace can be shown to be
legal without the use of Axiom (9). More details on how to do this are given in the next section.
The problems arising from the axioms defining the general notion of equivalence (Axioms (12)
through (14)) may be avoided by omitting these axioms and reinterpreting Axioms (3) through (6) as
reduction rules, that is, rules for reducing complicated expressions to simpler, equivalent expressions.
Reduction rules may be obtained by putting an ordering on trace expressions and interpreting an
equivalence axiom A = B as A --> B if B precedes A in the order or as B --> A if A precedes B.
One then shows that two traces are equivalent by reducing them to the same irreducible trace. One
determines the value of a trace by reducing it to a trace for which a value is defined.

Our use of reduction rules deviates slightly from the usual. In most reduction systems, a rule
can be used to reduce any part of an expression. Thus a rule such as ab --> ¢ may be used to show
that dabf --> dcf. In our use of reduction rules, we only allow rules to be used to reduce prefixes of
expressions. Thus a rule such as

*Note that the order of the procedure calls in the traces in this program is reversed. This is done for the sake of efficiency in the Prolog
program.

C. A. MEADOWS

I(T) => push(a).T.firstpop --> T
could be used to reduce
push(apple).push(orange).firstpop. push(kumquat)
to
push(orange).push(kumquat)

since push(apple).push(orange).firstpop reduces to push(orange), but could not be used to reduce the
trace to

push(apple).push(kumquat)
even though push(orange).firstpop considered as a trace in itself reduces to the empty trace.

Replacing equivalence axioms by reduction rules does not in itself guarantee completeness, how-
ever, since it is possible that an expression may not reduce to an irreducible expression in a finite
number of steps. Moreover, the use of reduction rules in place of equivalence axioms may also give
rise to incorrectness, since it is possible that two equivalent traces may reduce to two distinct irreduci-
ble traces or that a trace T for which V(T.C) is explicitly defined may reduce to a trace T for which
V(T'.C) is not explicitly defined.

Incompleteness arising from nontermination of reduction systems may be avoided by basing the
reduction rules on a well-founded partial ordering of expressions, that is, one in which there is no
infinite chain of expressions

X, >X,>...> X, > ...

In such a case, any expression must reduce to an irreducible expression in a finite number of steps,
since otherwise it would be preceded by an infinite number of expressions.

The problem of guaranteeing the correctness of a reduction system is trickier. Consider our
table lookup specification, for example. We may reinterpret Axioms (3) through (6) as

(3) T.insert(a).current --> T.insert(a)

(4) T.insert(a).delete --> T

(5) T.insert(a).left.right --> T.insert(a)

(6) T.insert(al).insert(a2).left --> T.insert(a2).left.insert(al).
It can easily be shown that this reduction system terminates. (We leave it as an exercise te the reader
to find the well-founded partial order with which it is consistent.) But suppose that we want to deter-
mine the value of the trace

Insert(apple).Left.Insert(orange).Right.Current.

We can no longer use Axiom (6) to show that the trace is equivalent to

Insert(orange).Insert(apple).Left.Right. Current

NRL REPORT 9131

and hence equivalent to

Insert(orange).Insert(apple). Current

bR

with value ‘‘apple.”’ Moreover, we cannot solve our problem by replacing Axiom (6) with the axiom

(6') T.Insert(a2).Left.Insert(al) --> T.Insert(al).Insert(a2).Left

since then we would no longer be able to find the value of the trace
Insert(apple).Insert(orange).Left. Current.

One possible solution to this problem is to add more axioms to the specification. Thus, for
example, we could insert the axiom

(6.1a) T.insert(al).left.insert(a2).right --> T.insert(a2).insert(al).
But this would give us no help in evaluating
v(insert(apple).left.insert(orange).insert(kumquat).current),

and we would have to insert a new axiom to cover that case. It is easy to see that eventually we
would wind up with an axiom for each occurrence of a left followed by N inserts. Since this would
leave us with an infinite number or axioms, it is clearly undesirable. If we substitute axiom (6’) for
axiom (6), we run into the same problem although in this case we have to add an infinite number of
value axioms instead of an infinite number of reduction rules.

Our solution to the problem of incorrect reduction systems arising from correct specifications is
to design specifications that can be guaranteed to give rise to correct reduction systems. In the next
section we show how a heuristic developed by Daniel Hoffman [6] in order to make specifications
easier to write and understand can be used to assist in the design of specifications that can be inter-
preted as correct reduction systems.

Another problem arises from the use of Prolog predicates in an inappropriate context. Consider,
for example, the use of ‘‘append’’ in the following axiom:

equiv(A,B) :- append([up],L1,T), append(H,T,A), append([down],L1,L2),
append(H,L.2,B), val(B,5).

Suppose that we are using this axiom to find a trace B that is equivalent to A = [out,push(w)]. Pro-
log first attempts to satisfy the query append([up],L1,T). This it can do successfully, but an infinite
number of traces .1 and T satisfy this condition. Thus, when the next condition, append(H,T,A),
fails, Prolog will be forced to backtrack an infinite number of times, thus causing an infinite loop.
This is not the case if we reverse the order of the first two conditions, since only a finite number of
traces H and T satisfy append(H,T,A). However, we do not wish to reverse the order of the next
two conditions. For suppose that we had done so, and that we wished to use the axiom to find a
trace B equivalent to A = [up,out]. The first two conditions would be satisfied successfully, instan-
tiating H. However, B and L2 would still be variables, and thus there would be an infinite number of
traces satisfying append(H,L2,B). If there were no such B with value S, the program would again be
forced to backtrack an infinite number of times. Thus a traces-to-Prolog translator must be designed
to take into account the context in which a condition will appear, that is, what positioning of a condi-
tion will allow it to be satisfied an infinite number of times and what positioning will allow it to be
satisfied only a finite number of times.

C. A. MEADOWS

5. HOFFMAN’S HEURISTIC FOR TRACE SPECIFICATIONS

In this section we present the techniques introduced by Hoffman [6] that we plan to use in
designing specifications that can be easily translated into Prolog.

Hoffman’s first innovation is to introduce functions that allow one to make global statements
about traces. The four functions our translator recognizes as of now are

(1) length(T) = number of procedure calls in trace T

(2) count(c,T) = number of time call ¢ appears in trace T
(3) all(c,T) = “‘true’’ if T consists entirely of calls named ¢
(4) nth(T,n) = the nth call appearing in trace T.

Count(c,T) can actually be used in two ways. It can be used to ask how many calls with a given
name appear in T. Thus, count(insert, insert(1).insert(2).delete) = 2. Or it can be used to ask how
many times a particular call appears in T. Thus, count(insert(1), insert(1).insert(2).insert(1)) = 2.

The addition of these functions has no effect on the foundations underlying trace specifications,
but the new functions do allow us to make more general statements about traces than would otherwise
be possible. For example, the infinite set of axioms concerning Inserts, Left, and Right from Section
4 can now be replaced by the single axiom

L(T2.Insert(a).Left. T1.Right) &
all(Insert,T1) &
length(T1) > 0
— T2.Insert(a).Left. T1.Right = T2.T1.Insert(a).

Thus the introduction of functions allowing us to make global statements about traces makes it easier
to write specifications that can be interpreted as correct reduction systems. However, they do not
give us a general method of writing such specifications. That is provided by the technique that fol-
lows.

Suppose that a specification writer has defined legality and value for a set of traces. Then it is
possible to divide the set of legal traces into equivalence classes. Choose a representative of each
class such that each prefix of a representative is also a representative. We say a trace T is in normal
form if it is a representative of an equivalence class of legal traces.

The conclusions of our trace specifications can now take three possible forms. A conclusion can
be of the form isnf(T) (T is in normal form), T.C = S, where T and S are in normal form, C is a
single procedure call, or v(T.C) = A, where T is in normal form and C is a single procedure call.

One proves assertions concerning value and legality by use of the following three axioms:

(1) isnf(e). (where ‘‘e’’ stands for the empty trace)

2) T = S.C.R & isnf(S) & length(C) = 1 & not(isnf(S.C)) & S.C = Q
& 1(Q.R) => KT).

3) T = S.C.R & isnf(S) & length(C) = 1 & not(isnf(S.C)) & S.C = Q
& length(D) = 1 & v(Q.R.D) = X => v(T.D) = X.

We give an example of the table lookup specification as written by Hoffman to conform to his
heuristics:

NRL REPORT 9131

all(insert,T1) & all(goleft,T2) & length(T2) =< length(T1) — isnf(T1.T2)

isnf(T) — T.current = T

isnf(T.goleft) — T.goleft.goright = T

isnf(T1.insert(a).T2.T3) & all(insert,T2) & all(goleft,T3) & length(T2) = length(T3)
— Tl.insert(a).T1.T2.delete = T1.T2.T3

isnf(T1.7T2.T3) & all(insert,T2) & all(goleft,T3) & length(T2) = length(T3)
— T1.T2.T3.insert(a) = T1.insert(a).T2.T3

isnf(T1.insert(a). T2.T3) & all(insert,T2) & all(goleft,T3) & length(T2) = length(T3)
— V(T1.insert(a).T2.T3.current) = a.

Hoffman also includes axioms about legality. These axioms are not necessary, however, since it is
possible to prove a trace legal or illegal by proving that it is equivalent to a trace in normal form or
that it is not equivalent to any trace in normal form.

6. A GRAMMAR FOR TRANSLATABLE TRACE SPECIFICATIONS

Recasting trace specifications as reduction systems, although it removes one source of infinite
looping, does not remove infinite loops arising from recursive definitions of trace predicates and func-
tions. Consider, for example, the Hoffman-legal assertion:

isnf(T) & V(T.T.current) = X — V(T.current) = X/2.

Prolog will discover the value of a trace T.current by using the rule to find V(T.T.current), then to
find V(T.T.T.T.current), and so on. We can prevent such looping by requiring the specification
writer to put a well-founded order on trace expressions and to define trace assertions such that when-
ever a predicate A(Ty,...,Ty) is used in the proof of A(Sy,...,Sy), then the T;’s precede the T,’s in
the partial order.

Another source of infinite looping lies, as we have said before, in conditions that can be satis-
fied in an infinite number of ways, and thus cause an infinite amount of backtracking. Consider, for
example, the assertion

isnf(T) & v(Q.current) = 5 & T = S.Q.R — V(T.current) = 5.

If there are an infinite number of traces Q such that v(Q.current) = 5, but T = S.Q.R for no
such Q, then Prolog, even if it is able to generate all such Q, is caught in an infinite loop, since it
backtracks to V(Q.current) = 5 and tries to satisfy it in a different way each time it fails on T =
S.Q.R. This problem can be solved by reordering the conditions:

isnf(T) & T = S.Q.R & V(Q.current) = 5 — V(T.current) = 5.

Only a finite number of Q, S, and R exist such that T = S.Q.R, so Prolog does not get caught
in an infinite loop when it is presented with a trace T and asked to find its value.

In this section we provide a grammar for translatable specifications. This grammar is a version
of the grammar developed by McLean [2] with some restrictions. First we describe the vocabulary of
our trace specification language, and then we show how it differs from McLean’s.

(1) Trace Variables. B,C,...,X,Y with subscripts if necessary. The letters A and Z are
reserved for the translator.

C. A. MEADOWS

(2) Empty Trace. Denoted by e.

(3) Procedure Name. Any finite character string beginning with a lowercase letter is a pro-
cedure name. When composed with the appropriate parameters, it forms a procedure call.

(4) Trace Predicates. We allow four trace predicates: the unary predicates isnf(T) and all(c,T)
and the binary predicates T1 == T2 and Tl === T2. This last stands for equality of
traces; the nonstandard equality netation is necessary since the translator must follow a special
procedure when two traces (as opposed to two terms of some other domain type) are set equal to
each other.*

(5) Trace Functions. The dot (.), V, length, count, and nth are the trace functions.

(6) Domain Names. The name of any domain. As in McLean, we are primarily interested in
parameter domains for procedure calls.

(7) Domain Constants. Domain constants are numerals, integers, or character strings not
beginning with capital letters.

(8) Arithmetic Operations. The arithmetic operations take the place of the domain functions
defined in McLean. They are the only domain functions we allow. They are +, -, *, /, and **

(for exponentiation).

(9) Domain Relations. The permissible domain relations are =, and >, <, =<, >=, for
domains for which they are defined.

(10) Domain variables. B,C,...,X,Y with subscripts if necessary. Domain variables are dis-
tinguishable from trace variables by context.

(11) Connectives. The connectives are & (for and), | (for or), if, then, and not.
(12) Parentheses. (and).
The rules of formation for trace specifications are as follows.
Domain Lists:
domain list —
domain name |
domain list domain name
Syntax Sentences:
syntax sentence —
procedure name: |
procedure name: domain list |

procedure name: = > domain name |
procedure name: domain list = > domain name

*Note that L(T) is no longer a language primitive. We can introduce it as an abbreviation L(T) = *‘there exists S such that isnf(S) & T =
S”.

10

NRL REPORT 9131

Domain Elements:

domain element —
domain constant |
domain variable

Variables:

variable —
domain variable |
trace variable

Argument Lists:

argument list —
domain element |
argument list, domain element

Procedure calls:

procedure call —
procedure name |
procedure name(nonempty argument list)

Trace Expressions:

trace expression —
empty trace |
trace variable |
procedure call |
trace expression.trace expression

Terms:

term —
domain element |
trace expression |
V(trace expression) |
nth(integer element,trace expression) |
count(procedure name,trace expression) |
count(procedure call,trace expression) |
length(trace expression)

As in McLean, terms and arithmetic expressions can have various fypes. Domain elements
inherit their type from the type of the domain to which they belong. Trace expressions are of type
trace expression. Terms of the form V(trace expression.procedure call) are of the same type as the
type of the domain element returned by the procedure call.

11

C. A. MEADOWS

Arithmetic Expressions

arithmetic expression —
integer or real constant |
domain variable |
term of type integer or real |
(arithmetic expression) + (arithmetic expression) |
(arithmetic expression) * (arithmetic expression) |
(arithmetic expression) - (arithmetic expression) |
(arithmetic expression) / (arithmetic expression) |
(arithmetic expression) ** (arithmetic expression)

Arithmetic expressions are of type integer or real.
Predicate Expressions:

predicate expression —
isnf(trace expression) |
trace expression = = trace expression |
trace expression === trace expression |
term = term |
arithmetic expression domain relation arithmetic expression

Conditions:

condition —
predicate expression |
not(condition) |
if (condition) then (condition) |
(condition) ‘“|”’ (condition) |
(condition) & (condition)
The quotation marks around the ‘‘|’’ sign are to distinguish it from the sign used to build the
grammar and do not appear in the actual specification. A condition such as not (X = Y) may also be
written as X != Y.

‘c'n

A condition of the form ‘‘not (condition)”’ or ‘‘if (condition) then (condition)’’ is called a
negated condition. A condition of the form ‘‘((condition)|(condition)|. . .|(condition))’’ is called an
or-condition. A condition of the form °‘((condition)&(condition)&. . .&(condition))’’ is called an
and-condition. Parentheses around a condition used to build an or-condition are necessary if and only
if that condition is an and-condition. Likewise, parentheses around a condition used to build an and-
condition are necessary if and only if that condition is an or-condition.

Assertions:

normal-form assertion —
isnf(trace expression) |
condition = > isnf(trace expression)

value assertion —

V(trace expression) = term |
condition = > V(trace expression) = term

12

NRL REPORT 9131

equivalence assertion —

trace expression == trace expression |
condition = > trace expression == trace expression
assertion —

normal-form assertion |
value assertion |
equivalence assertion

The conclusion of an assertion is defined to be the assertion itself if no conditions are present; other-
wise it is defined to be the the part of the assertion following the ‘‘=>"’ symbol.

Syntax Section:
syntax section —
syntax sentence | _
syntax section syntax sentence
Normal Form Section:
normal form section —
normal-form assertion |
normal-form section normal-form assertion
Value Section:
value section —
value assertion |
value section value assertion
Equivalence Section
equivalence section —
equivalence assertion |
equivalence section equivalence assertion

Semantics Section:

semantics section —
normal form section value section equivalence section

Trace specification:

trace specification —
syntax section semantics section

Specification assertions are defined to be admissible assertions. Admissibility is defined below.

We begin by defining admissible assertions in terms of assertions containing only the ‘‘&’’ con-
nective.

13

C. A. MEADOWS

Table 1 — Table of Occurrence Types

Predicate Expression w = occurrence of type of w
¢ as a variable in

¢ ==y ¢ “in”
¥ “‘out”’

isnf(¢)) ““in’’

all(mr,¢) 1 “‘out”
¢ “in”’

¢ ===y ¢ “in”’
¥ “‘out”’

=g o “‘out”’

o and 3 single variables ¢ “in”’

or procedure calls with

variable arguments

a =4 o “out”’

B8 =«

« single variable or

procedure call

with variable arguments

8 not single variable

or procedure call

with variable arguments

I’ R count(w,o) T “out’’

R = =<, “>," | ¢ “in”’

C= o =

' R v(¢) ¢ “in”’

R == “<,”“>>

et op oo

I' = nth(x,¢) K “‘out”

nth(x,¢) = T o) ““in”’

I' R f(al,...,an) ai where «i a single variable “in”’

f(al,...,an) R T k in ai = count(k,) “out”’

R ==, <, “>," | ¢ in ai = count(k,d) “in”’

o gp e
¢ in ai = length(¢) ““in”’

o >T o where « is a single variable “in”’

a<T

a=T

a=<T

I' > «

I'< a

I' 2z «

I' = @

14

NRL REPORT 9131

Definition 6.1: We say that an assertion is simple if its condition is either empty, consists of a single
atomic condition, or consists of atomic conditions bound together by the ‘‘&’’ connective.

To proceed further we need to define an occurrence of a variable or expression in an assertion.

Definition 6.2: Let o be a substring of a character string S. An occurrence of ¢ in S is an ordered
pair w = (k,,0), where k, is an integer such that, for 1 < i < length(o), the k, + i — 1th character
of S is the ith character of 0. We say that an occurrence ' precedes w if k, < k,. We say that
is an occurrence of ¢ in 7 in S (more briefly, an occurrence of w in 7, where confusion may be
avoided) if there exists an occurrence w’ of 7 in S such that k,» < k, and k, + length(o) =< k, +
length(7). We say that w is an occurrence of ¢ as a variable in S (or as a constant, predicate, etc.) if
o is to be interpreted as standing for a variable (or for a constant, predicate, etc.) at the point at
which it occurs.

We now assign types to occurrences of character strings as variables in predicate expressions
occurring in assertions. An occurrence may be one of two types: ‘‘in’’or ‘‘out.”” We motivate the
definition of ‘‘in’> and ‘‘out’’ as follows. If a variable must be instantiated before an expression is
evaluated, its occurrence is of type ‘‘in’’ (for input); if it will be instantiated after the expression is
evaluated, its occurrence is of type ‘‘out’’ (for output).

The various occurrence types are defined in Table 1.

In the example
W = count(N,T) + count(goleft,T.S)

we see that the type of the occurrence of W in the left-hand side of the equation is ‘‘out,”” the
occurrence of N in the first argument of the first ‘“‘count’ is of type ‘‘out,”” the occurrences of T in
the second argument of the first ‘‘count’” and in the second argument of the second ‘‘count’ are both
of type ‘‘in,”” and the occurrence of S in the second argument of the second ‘‘count’’ is of type ‘‘in.”’

We are now ready to define the context-sensitive portion of the grammar. This definition is
given in terms of ‘‘admissible’’ assertions. We begin by defining admissibility of simple assertions
and then use that definition of admissibility to define admissible general assertions. Admissibility is
defined in two parts: variable admissibility, which provides a solution to the subgoal ordering prob-
lem, and trace admissibility, which provides a solution to the recursive looping problem.

Definition 6.3: We say that a simple assertion is variable admissible if

(1) whenever there is an occurrence of a variable in an ‘‘out’” argument of the conclusion,
then there is an occurrence of that same variable in either an ‘‘in’” argument of the conclu-
sion or in an ‘‘out’’ argument of a condition and

(2) whenever there is an occurrence w of a variable in an ‘‘in’’ argument of a condition, then
either there is an occurrence of that same variable in an ‘‘in>’ argument of the conclusion
or there is an occurrence w’' preceding « of that variable in an ‘‘out’’ argument of a condi-

tion.

The second condition, trace admissibility, is more complicated.

15

C. A. MEADOWS

Definition 6.4: We say that a partial order < on trace expressions is a trace order if
(1) < is well founded;

(2) A < B implies that A7 < Br, where 7 is any substitution for the variables in A and B,
and;

(3) A < B implies that A.C < B.C for any trace expression C.

Definition 6.5: Let S and T be two sets of trace expressions, and let < be a trace order. We say
that S <* T if there exists an expression S € S and an expression T € T such that S < T. We say
that S =*Tif S = Tand that S <*Tif S <*TorS =T.

Note that <* is nor a partial order; in particular, it is not transitive. Moreover, it is possible to
have S = T and S <* T be true for at the same time.

Definition 6.6: Let w be an occurrence in an assertion. We define G(w) to be the graph with node
set N(w) consisting of all trace expressions in the assertion and edge set consisting of all pairs (A,B)
such that the equation A === B precedes w. If S is a trace expression, we define G*(w,S) to be
the connected component of G(w) containing S; its node set is N*(w,S).

We are now ready to define trace admissibility.

Definition 6.7: Let < be a trace ordering. We say that a simple assertion is trace admissible with
respect to < if

(1) whenever the conclusion is of the form ‘‘isnf(T)’’, then the condition contains no
occurrences of X == Y or V(S), and whenever the conclusion is of the form X ==Y,
then the condition contains no occurrences of V(S);

(2) whenever w is an occurrence of S as an ‘‘in’” argument of type ‘‘trace’’ in a predicate in

(X399 L]

the condition of the same kind (isnf, V, ==) as the conclusion, then there is an ‘‘in
argument T of the conclusion such that then N*(w,S) <* N*(w,T); and

(3) whenever the conclusion is of the form T == T’ and w is the occurrence of the end of
the assertion, then N*(w,T') <* N*(w,T).

Definition 6.8: Let < be a trace ordering. A simple assertion is admissible with respect to < if it
is both trace admissible with respect to < and variable admissible.

Definition 6.9: Let < be a trace ordering. Let A, B, C, and D be (possibly empty) conditions. Let
E be a conclusion.

(1) The assertion A & not(B) & C — E is admissible with respect to < if and only if both
A&C -~ E
and

A&&B&C — E

are admissible with respect to <.

16

NRL REPORT 9131

(2) The assertion A & (if B then C) & D — E is admissible with respect to < if and only if
the assertions

A&D — E;
A&B&D — E;
and
A&B&C&D—E

are admissible with respect to <.

(3) The assertion A & (B | C) & D — E is admissible with respect to < if and only if the
assertions

A&B&D—E
and
A&C&D—E

are admissible with respect to <.
For example, the assertion
vil) =X =R ==

is not variable admissible, since the only occurrence of T in the condition is of type ‘‘in,”” and there
is no type ‘‘in’’ occurrence of T in the conclusion. On the other hand the assertion

T==8S&VvS) =X—v(T) =X

is variable admissible. There are two occurrences of S in the condition. The first is of type =
‘‘out,”” and the second is of type ‘‘in.”” There is a type ‘‘in’’ occurrence of T in the condition, but
also a type ‘‘in”’ occurrence of T in the conclusion. There is a type ‘‘out’’ occurrence of X in the
conclusion, but also a type ‘‘out’’ occurrence of X in the condition. Likewise the assertion

T==S|Q==95&A =v@S) - W(T.Q) = A

3 ?

is variable admissible. For example, there is an ‘‘in’” occurrence of S in A =v(S), but there are
““out’’ occurrences of S in both parts of the or-condition preceding A = v(S). The assertion

VD) !1=X&X > 5 — v(T) =3

(X3 2

is not variable admissible, even though there is an ‘‘out’” occurrence of X preceding the ‘‘in’

occurrence of X in X > 5, since the ‘‘out’ occurrence appears in a negated condition not containing

the ““in’” occurrence. On the other hand, the assertion :
not(v(T) = X & X > 5) = v(T) = 3

is variable admissible.

The assertion

isnf(T) — isnf(T.S)

17

C. A. MEADOWS

is not trace admissible for any trace order <. Suppose that it were. Then the definition of trace
admissibility implies that T.S < T, and the definition of trace order implies that T < T by substitu-
tion of the empty trace. This would imply the existence of an infinite chain ... T < T < T, con-
tradicting the well-foundedness of <.

On the other hand, the assertion
S = T.push(a).pop & isnf(T) — isnf(S)

is trace admissible with respect to the ordering based on length of traces. To see that this is true, let
w be the occurrence of T as the argument of isnf(T). Then N¥{w,T) = (T}, and N*(,S) =
{S,T.push(a).pop}, and we see that N*(w,T) <* N(w,S), since T < T.push(a).pop according to our
ordering.

Definition 6.1¢: A trace specification is admissible if there exists a trace order < such that all trace
assertions in the semantics section are admissible with respect to <.

7. BESCRIPTICN OF THE TRANSLATION ALGORITHM

In this section we describe the algorithm for translating trace specifications into Prolog. We
construct a function ‘‘trans’’ that maps trace specification assertions to Prolog statements.

BEGIN
:=0,1:=0
Assertions:

(1) Normal form assertions

IF ¢ = a;.o such that «; through o, are trace variables or procedure calls AND n > 1
THEN
1=i+1
trans(condition = > isnf(¢)) :=
isnf(Ai) :-
trans(condition),
listappend([trans(a,),trans{(o, _),. . . ,trans(a))],A;).
trans(isnf(¢) : =
insf(Ai) :-

listappend([trans(«,),trans(a,), . . .trans(a)], A;).
ELSE
trans(condition = > isnf(¢)) :=
isnf(trans(¢)) :- trans(condition).
trans(isnf(¢)) : =
isnf(trans(¢)).

(2) Value assertions

IF ¢ = «y.« such that « through o are trace variables or procedure calls AND n > |
AND « is a function term or arithmetic expression THEN

18

NRL REPORT 9131

I=i+1
ji=j+1
trans(condition = > v(¢) = k) :=
v(Ai,Zj) :-
listappend([trans(ay,),trans(ey, ;). - .,trans(c;)],Al),
trans(condition),

trans(Zj = «).

trans(v(¢p) = k) :=
V(AL,Zj) -
listappend([trans(ay),trans(a, _1),. . -,trans(a;)],Ai),
trans(Zj = «).

ELSEIF ¢ = «,.¢, such that «; through «, are trace variables or procedure calls AND n
> 1 THEN
i=i+1
trans(condition => v(¢) = k) :=
v(Ai,trans(x)) :~
listappend([trans(a,),trans(a,, _{),. . .,trans(a;)],Ai),
trans(condition).

trans(v(¢) = k) :=
v(Ai,trans(k)) :-
listappend([trans(c,) trans(cy, _),. . .,trans(e;)],Al).

ELSE IF « is a function term or arithmetic expression THEN

ji=j+1
trans(condition => v(¢) = k) :=
v(trans(¢),Zj) :-

trans(condition),
trans(Zj = «).

trans(v(¢) = «) :=
v(trans(¢),Zj) :-
trans(Zj = «).

ELSE

trans(condition = > v(¢) = x) :=
v(trans(¢),trans(x)) :-
trans(condition).

trans(v(¢) = x) :=
v(trans(¢),trans(x)).

(3) Equivalence assertions

IF ¢ = ;.o such that o through o, are trace variables or procedure calls AND y = 3.
... .By such that 8, through §,, are trace variables or procedure calls ANDn > 1 ANDm >
1 THEN

19

C. A. MEADOWS

1=i+2

k:=i—1

trans(condition => ¢ =) :=

equiv(Ak,Ai) :-

listappend([trans(c,),trans(a;, _y),. . ., trans(e;)],Ak),
trans(condition),
listappend([trans(8,,),trans(B, _1),- - .,trans(3,)],Ai).

trans(¢p =) :=

equiv(Ak,Ai) :-
listappend([trans(c,),trans(e,), . . ., trans(a;)],Ak),
listappend([trans(8,,),trans(8,,_1),- - .,trans(3,)],Ai).

ELSE IF ¢ = a;.o, such that o through «, are trace variables or procedure calls AND n
> 1 THEN

ii=i+1
trans(condition => ¢ = ¢) :=
equiv(Ai,trans(y)) :-
listappend([trans(c,,),trans(cy, _1),. - - trans(a;)],Ai),

trans(condition).
trans{¢p = ¢¥) :=
equiv(Ai,trans(y)) :-
listappend([trans(o,),trans(o, _;),. - . trans(a;)],Ai).
ELSE IF ¥ = 8.8, such that 8, through 3, are trace variables or procedure calls AND
m > 1 THEN
i:=i+1
trans(condition => ¢ = y) :=
equiv(trans(¢),Ai) :-
trans(condition),

listappend([trans(B3,,),trans (f (B,, —1),. - . .trans (3)],Ai).

trans(p = y) :=
equiv(trans(¢)),Ai) :-
listappend([trans(B,,),trans (f (B,, —1),. - . .trans (B)],Al).

ELSE
trans(condition => ¢ =) :=

equiv(trans(¢),trans(y)) :-
trans(condition).

trans(¢p =) :=
equiv(trans(¢),trans(y)).

20

NRL REPORT 9131
Conditions:
trans(® & ¥) := (trans(P)), (trans(¥))
trans(® | ¥) := (trans(®)); (trans(¥))
trans(not(®)) : = not((trans(P)))
trans(if ® then ¥) := not((trans(®P),not((trans(¥))))).
Predicate Expressions:
(1) Relations involving arithmetic expressions
flay,. . o) R g8(B15- - -5Bm)
where f and g stand for arithmetic expressions, dl through «, are the terms of f, B,
through S, are the terms of g, and R is a relation.

IF there exists an s such that « is a function expression THEN

ji=j+1
trans(f(ay,. . ., 0, - .,ap) R g2(B¢,....8p) 1=
trans(Zj = o), trans(f(ety,. . ., Zj,. . .,00) R g(By,- . .,8m))-
ELSE IF there exists a t such that 3, is a function expression THEN

ji=j+1
trans(f(ay,. . .,05) R g8(B1s- - -Bps- - 5Bw) i =
trans(Zj = B, trans(f(ay,. . .,ay) R g8y, - .,Zj. . .,Bm))-
ELSE IF n > 1 THEN

ji=j+1
trans(f(ay,- - .,ay) R g(By,. . ..8p) :=
Zj is f(ay,. . .,ap), trans(Zj R g(By,. . ..Bw)-
ELSEIF m > 1 THEN
ji=j+1
trans(a R g(B4,. . .,8w) :=
Zj is g(B,- - -,Bm), trans(x R Zj).
ELSE
trans(a¢ R B) := a R 3.

(2) Equivalence of traces

trans(¢p == ¢).

21

©)

“)

C. A. MEADOWS

IF ¢ = «,.o, Where the ¢; are trace variables of procedure calls AND n > 1 THEN
i:=i+1
trans(p ==) :=

listappend([trans(a,),trans(ce, —1),. . .,trans(a)],Al),
trans(Ai == y).

ELSE IF ¥ = (3,.3, where the §3; are trace variables or procedure calls AND m > 1
THEN

L=i+1

trans(¢p == ¢) :=

trans(¢p == Al),
listappend([trans(B,,),trans(3,,_1),. . . ,trans(G3,)],Al).

ELSE

trans(¢p ==) := equiv(trans(¢),trans(y)).

Equality of trace expressions:

¢ === ¢
IF ¢ = ay.o, where the ¢; are trace variables or procedure calls AND n > 1 THEN
i:=1i+1
trans(¢p ===) : =
listappend([trans(c,),trans(a;, _),. . .,trans(oy)]),
trans(Ai ===).
ELSE IF ¥y = 83,.3, where the (; are trace variables or procedure calls AND m > 1
THEN
L=i+1
trans(¢p ===) .=
trans(¢p === Ai),
listappend([trans(3,,,),trans(8,, _1),- - .,trans(8)]).
ELSE

trans(¢p ===) := trans(¢) = trans(y).
Other trace predicates: isnf, all
pred(ay,. . .,ap).

IF there exists an s such that « is a trace expression 3.3, where the §,’s are trace vari-
ables or procedure calls AND m > | THEN

22

NRL REPORT 9131

ii=i+1
trans(pred(ay,. - ..,0,. - .,&p)) 1=
(listappend([trans(By,), . - .,trans(8)],Al),
trans(pred(ay,. . .,Al,. . .,0)).
ELSE

trans(pred(ay,. . .,0y)) (=
pred(trans(a;),. . . trans(oy)).

(5) Equations involving functions

oy .. .,a) = Y (or ¥ = ¢(ay,...a,) where ¢ = length, count, nth, or value, and ¥ is
not a function term or a complex arithmetic expression

IF there exists an s such that « is a trace expression oy = ;.8, where the §,’s are trace
variables or procedure calls AND m > 1 THEN

ii=i+1

trans(P(ay,. - -0, - -,0p) = Y) 1=
(listappend([trans(8,,),. . . ,trans(8,)],Ai),
trans(o(ay,. . ., Al,. . .,ap) = ¥)).

ELSE

trans(o(ay,. . .,0p) = ¥) 1=
o(trans(ay),. . .,trans(cy,),trans(y)).

Trace Expressions:
IF ¢ is a trace variable THEN trans(¢) = ¢
ELSE IF ¢ is a procedure call THEN trans(¢) := [trans(¢)]
ELSE IF ¢ = e THEN trans(¢) : = [].
Procedure Calls:
(1) Empty argument list
trans(f) : = [f]
(2) Nonempty argument list
trans(f(a;,. . .,a,)) := [f,a,...,a,]
All Other Cases:
trans(¢) := ¢

Besides the definition of lower level predicates, the translated program also contains the defini-
tion of the following high-level predicates.

23

C. A. MEADOWS

isnf([]).
I(T) :-

append(U,[W|V],T),
isnf(V),
equiv([W|V1],X),
append(U,X,S),

1(S).

v(IX|T1,Y) :-

not(isnf(T)),
append(U,[W|V],T),
isnf(V),
equiv(fW|V],Z),
append(U,Z,S),
v([X]|S1,Y).

dequiv(X,X) :- isnf(X).
dequiv(X,Y) :-

append(U,[W|V],X),
isnf(V),
equiv([W|V1,2),
append(U,Z,Q),
dequiv(Q,Y).

tequiv(X,Y) :-

dequiv(X,Z),
dequiv(Y,Z).

8. PROOF OF TERMINATION OF TRANSLATED PROGRAMS

In this section we define a grammar that is satisfied by all Prolog programs that result from
specifications satisfying the specification grammar, and we prove that all Prolog programs satisfying
this grammar terminate under certain conditions.

8.1 Definition of Prolog Grammar

The grammar for terminating Prolog programs is very similar to the grammar for trace specifi-
cations. Therefore, in order to avoid needless repetition, this section is brief and frequently refers to
the section on the specification grammar.

““Occurrences’’ are defined as for specification assertions. The assignment of ‘‘in’’ and ‘‘out’
arguments for predicates follow the assignment for specification predicates and functions, with the fol-
lowing additions:

(1) When a predicate is created from a function by adding a new argument for the function value,
that argument is designated as an ‘‘out’” argument. For example, length(T) becomes
length(T,X); the second argument is an ‘‘out’’ argument.

24

NRL REPORT 9131

(2) Several new predicates appear in the translated specifications. These are assigned argument
types as shown in Table 2.

Table 2 — Assignment of Argument Types to Predicates

predicate argument types “in’” or “‘out”’
1(¢) ¢ of type ‘‘trace”’ ¢ “‘in”’
dequiv(¢,7) both of type ‘‘trace’’ ¢ “‘in,”” 7 “‘out”
tequiv(¢,) both of type ‘‘trace’’ both “‘in”’ »
listappend(¢,7) Ist argument ‘‘list’’ 1st ““in,”” second ‘‘out’” OR

2nd argument ‘‘trace’’ 2nd ““in,”’ 1st “‘out”’

dis T both ‘‘integer’” or “‘real”’ | -1st “‘out,”” 2nd ‘‘in”’
7 arithmetic expression

An argument of type ‘‘list’’ is a list of variables and procedure calls.

tad

The rule for choosing which argument of “‘listappend’” is of type ‘‘in’’ is as follows. The
second argument of ‘‘listappend’’ in a translated specification is always a variable that appears in
exactly one other place in the clause. If the other occurrence of that variable is as an ‘‘in’’ argument
of a condition or an ‘‘out’’ argument of the conclusion, then the type of the second argument is
‘‘out’” and the first argument is ‘‘in.”” If the other occurrence is as an ‘‘out’’ argument in a condition
or an ‘‘in’’ argument of the conclusion, then the type of the second argument is ‘‘in’” and the first
argument is ‘‘out.”” For example, in

equiv(Al,A2) :-

listappend([[{front]], T,[[push,X]]],Al),
listappend([T, [{push,X]]1],A3),
isnf(A3),
listappend({[[push,X]],T],A2).

The type of the first argument of the first occurrence of ‘‘listappend’” is ‘‘out,”’ the type of the first
argument of the second occurrence of ‘‘listappend’” is ‘‘in,”” and the type of the first argument of the

(X LR]

third occurrence of “‘listappend’’ is “‘in
The predicates are assigned levels as follows:

Level O: length, count, all, >, <, >=, <=, = listappend
Level 1: isnf

Level 2: equiv

Level 3: dequiv

Level 4: tequiv

Level 5: v

Level 6: 1

Definition 8.1: Let L be a list of variables and traces. We define concat(L) to be the trace obtained
by concatenating the members of L in reverse order.* If A is a set of lists, concat(A) is defined to be
{concat(L) | L € A}.

*Recall that the order of the procedure calls appearing in a trace expression is reversed in the translated Prolog program.

25

C. A. MEADOWS

The semantics of the predicates are as follows.
(1) I(X) is true if X is equivalent to a normal form trace.
(2) dequiv(X,Y) returns the normal form trace Y to which X is equivalent.

(3) tequiv(X,Y) holds if and only if X and Y are equivalent (that is, if they reduce to the same
normal form trace).

(4) If L is the ““in’” argument, listappend(L,X) returns concat(L). If X is the “‘in’’ argument,
listappend(L,X) returns a list L’ such that there is a substitution for the variables in L

making L=L' and concat(L') = X. When queried repeatedly, listappend(L,X) returns all
such L'.

(5) X is Y sets X equal to the number obtained by computing the arithmetic expression Y if X
is a variable. If X is a number, it holds if and only if X is equal to the number obtained
by computing Y.

We define simple clauses in a manner analogous to the definition of simple assertion; a clause is
simple if the only logical connective used in its condition is the <, (or ‘‘and’’) connective. We now
define variable and list admissibility in a manner analogous to the definition of variable and trace
admissibility for specifications.

Definition 8.2: We say that a simple clause is variable admissible if

(1) Whenever there is an occurrence of a variable in an ‘‘out’” argument of a goal of the
clause, there is an occurrence of that same variable as either an ‘‘in’”> argument of the goal
or as an ‘‘out’” argument of a subgoal.

(2) Whenever there is an occurrence w of a variable as an “‘in’’ argument of a subgoal, there
[*3

is either an occurrence of that same variable in an ‘‘in’’ argument of the goal, or an
occurrence preceding w of that variable in an ‘‘out’ argument of a subgoal.

As before, the definition of list admissibility is a little more complicated.

Definition 8.3: Let w be an occurrence in a clause. We define G(w) to be the graph with node set
N(w) the set of all lists L and all variables occuring as trace arguments, and edge set the set of all
pairs (L, X) such that the subgoal listappend(L,, X) precedes w and of all pairs (X,Y) such that X =
Y precedes w. If L is a list (or X is an argument of type ‘‘trace’’), we define G(w,L) to be the con-
nected component of G(w) containing L (similarly for G(w,X)). It has node set N(w,L) (or N(w,X)).

If A = RUT, where R is a set of list arguments and T is a set of trace arguments, we define
concat(A) to be {concat(L) | L € R} U T. If A and B are two such sets, and < is a trace ordering,
we say that A <* B (A <* B) if concat(A) < * concat(B) (concat(A) <* concat(B)).

Definition 8.4: Let < be a trace ordering. A simple clause is list admissible with respect to < if

(1) whenever the conclusion is of the form equiv(Y,X), then N(w,Y) *> N(w,X), where w
denotes the end of the clause, and,

(2) for each occurrence w of a term X appearing as an ‘‘in’’ argument of type ‘‘list”” of a
predicate of the same level as the conclusion, there is an ‘‘in”’ argument Y of the conclu-
sion so that N(w,Y) *> N(w,X).

26

NRL REPORT 9131

Definition 8.5: Let < be a trace ordering. Then a clause is admissible with respect to < if it is list
admissible with respect to < and it is variable admissible.

Definition 8.6: Let < be a trace ordering. Let A, B, and C be conditions, and let D be a conclu-
sion. We say that

(1) D :- A, not(B), C. is admissible with respect to < if and only if D:-A,C.and D :- A,
B, C. are both admissible with respect to <.

(2) D:- A, (B]| O), E. is admissible with respect to < if and only if both D :- A, B, E. and
D :- A, C, E. are admissible with respect to <.

Theorem 8.7: The translation algorithm translates admissible specification assertions into admissible
Prolog clauses.

Proof: We first show that admissible simple assertions are translated into admissible simple clauses.
(1) Variable admissibility is preserved.
We want to show that the following conditions hold:

[a] If there is an occurrence of a variable in an ‘‘out’’ argument of a goal of the clause, then
there is an occurrence of that same variable as either an ““in”’ argument of the goal or as
an ‘“‘out’’ argument of a subgoal.

[b] If there is an occurrence w of a variable in an ‘‘in’’ argument of a subgoal, then there is
either an occurrence of that same variable in an ‘‘in’’ argument of the goal, or an

occurrence preceding w of that variable in an ‘‘out’’ argument of a subgoal.

The result may be concluded from the following observations about properties of translated
specifications, which can be proved by inspection of the translation algorithm.

<

Let w be an occurrence of a variable X in an ‘‘in’’ argument of a predicate in the condition.
One of two things can occur. Either X occurs in the original assertion (before translation), or X was
created by the translation algorithm.

If X was created by the translation algorithm, then we only have to consider the following cases.

(i) X appears in trans(pred), where pred is a predicate appearing in the condition. In this
case, X appears exactly twice, once as an ‘‘in’’ argument, and once as an ‘‘out’’ argu-
ment, and the occurrence as an ‘“‘out’’ argument precedes the occurrence as a ‘‘in’’ argu-
ment.

(i) X appears as an ‘‘in’” argument of ‘‘listappend’’ in the condition, where “‘listappend’ does
not occur inside any trans(pred). The only circumstance under which this occurs is if X
also occurs as an ‘‘in’’ argument of the conclusion.

(iii) X appears as an ‘‘out’’ argument of the conclusion. In this case X also occurs as an
““out’’ argument of a ‘‘listappend’’ occurring in the condition.

Now consider the case in which X was not created by the translation algorithm. In this case, we
need to examine the following possibilities.

27

C. A. MEADOWS

(i) X appears in ‘‘in’’ argument of a predicate in trans(pred), where pred is a predicate in the
condition of the original assertion. In this case, either X appears in an ‘‘in’’ argument of
the conclusion of the original assertion or X appears in an ‘‘out’” argument of predl,
where predl precedes pred in the condition. In the first case X appears either in an “‘in”’
argument in the translated conclusion or in an ‘‘out’’ argument of a listappend preceding
all occurrences of translated predicates in the condition. In the second case, X appears in
an ‘‘out’” argument in trans(predl), and trans(predl) precedes trans(pred).

k]

(i) X appears in an ‘‘in’’ argument of a listappend following all occurrences of trans(pred) in
the condition. In this case, X appears in an ‘‘out’’ argument of the conclusion in the origi-
nal assertion. Thus X appears either in an ‘“‘in>’ argument of the conclusion or in an
“‘out’’ argument of some predicate in the condition, and the same kind of arguments as in

(i) may be used.

(ili) X appears in an ‘‘out’’ argument of the conclusion. In this case the proof is similar to that
of (1) and (ii).

(2) Assertions that are trace admissible with respect to a trace order < are translated into clauses
that are list admissible with respect to <.

We need to show that two conditions hold:

[a] If the conclusion is of the form equiv(Y,X), then N(w,Y) *> N(w,X), where w denotes the
end of the clause; and

[b] for each occurrence w of a term X appearing as an ‘‘in’’ argument of type ‘‘list’” of a
predicate of the same level as the conclusion, there is an “‘in’” argument Y of the conclu-
sion so that N(w,Y) *> N(w,X).

We will verify that [b] holds; the proof of [a] is similar.

Suppose that P is a predicate of the same level as the conclusion G. Then P appears in
trans(pred), where pred is of the same level as the conclusion of the original assertion. Suppose that
X appears as an ‘‘in’’ argument of P of type ‘‘trace.”” Let o denote the occurrence of X in P. We
wish to show that there is an ‘‘in’’ argument Y of G so that concat(N(g,Y)) *> concat(N(0,X)).

By the definition of the translation algorithm, there is an occurrence of listappend(L,X) in
trans(pred) preceding P so that concat(L) is an ‘‘in’” argument of pred. Let w be the occurrence of
concat(L) in the original assertion. Then, by the definition of admissibility, there is a trace expres-
sion T appearing as an ‘‘in’’ argument of the goal so that N(w,T) *> N(w,concat(L)). Again, by the
definition of the translation algorithm, there is an occurrence of listappend(L’,Y) preceding the
occurrence of trans(pred) so the concat(L’) = T and Y is an ‘‘in’” argument of G of type ‘‘trace.”’
Thus it is enough to show that N(w,T) is a subset of concat(N(s,Y)) and that N(w,concat(L)) is a sub-

set of concat(N(g,X)). We will prove the second assertion; the proof of the first is similar.

The argument will be by induction on the distance of an element of N(w,concat(L)) from
concat(L)) in the graph G(w,concat(L)). Clearly concat(L) € concat(N(s,X)); thus the result holds for
distance 0. Suppose that the result holds for all members of N(w,concat(L)) of distance < t from

concat (L), and the the distance of S from L is t. Then there is an occurrence of U === S or S
=== U preceding » such that the distance of U from T is t — 1. Thus, by the induction
hypothesis U € concat(o,L.). Since trans(U === §) is one of

28

NRL REPORT 9131

listappend(Lg,As), A; = A,, listappend(Ly;,Ay),
listappend(Lg,A,), U = A,,
A; = 8§, listappend(Ly,A,), or
U=S8
where concat(Ly;) = U and concat(Lg) = S, and trans(U === S) precedes o, the result follows.

Finally, to show that all admissible assertions are translated into admissible simple clauses, we
note that

(1) trans(not(A)) = not(trans(A))
(2) trans(A | B) = trans(A) ; trans(B), and;
(3) trans(if A then B) = not(trans(A),not(B)).

Thus the definition of admissible assertions in terms of admissible simple assertions is mapped pre-
cisely to the definition of admissible clauses in terms of admissible simple clauses.

8.2 Termination Proof

To prove termination of translated programs, we use the concept of the search tree. Essentially,
a search tree is a record of all possible attempts to satisfy a goal, including all failures and successes.
The definitions we use are essentially those from Lloyd [9], with some modifications (which are
noted).
Definition 8.8: A term is defined as follows:

(1) A variable is a term.

(2) A constant is a term.

(3) If fis a function, then and t;,. . .,t; are terms, then f{(t,,...,t,) is a term.

A literal is a term of the form f(t,,...,t;) (a positive literal) or the negation of such a term (a
negative literal). An expression is obtained by joining two or more literals together by the logical

connectives ‘‘and,”” ‘‘or,”” and ‘‘not.”’

Definition 8.9: Let V ={v,,...,v,} be a set of distinct variables. A substitution 7 is a function from
V to a set of terms. If E is an expression containing the variables {v,,...,v,}, the expression E7 is
the one obtained by performing the substitution 7 on the variables of E.

If o is a substitution so that vic = e;, we denote this by ¢ = {v /e,,...,v /e,}.
Definition 8.10: Let A and B be two expressions, and let 7 be a substitution. We say that 7 is a
unifier for A and B if A7 = B7. We say that 7 is a most general unifier (mgu) if for each unifier 7
of A and B, there is a substitution ¢ such that = = 7o.

In other words, 7 is an mgu if it is in some sense a ‘‘first’’ unifier of A and B.
Example: If A = f(X,3) and B =£f(W,Z), the substitutions 7 = {X/P, W/P, Z/3}, and ¢ = {X/7,
W/7, Z/3} are both unifiers, but only 7 is an mgu.

29

C. A. MEADOWS

Note that one mgu can be obtained from another by a simple renaming of variables. Thus we
can think of all mgu’s as being equivalent, and so any two expressions that can be unified have a
unique mgu. From now on, instead of saying ‘‘7 is an mgu for A and B,”” we will say ‘7 is the mgu
for A and B.”’

Definition 8.11: A program clause is a clause of the form A :- E, where A is a positive literal and E
is a (possibly empty) expression. A set of program clauses is called a program.

We are now ready to define a search tree. We begin with the definition of search tree for pro-
grams defined by clauses of the form

A :- By,...,B,,
where A is a positive literal, and the right-hand side is either empty or consists of positive literals.
Definition 8.12: Let P be a program defined by clauses of the form

A - By,...,B,,

where A is a positive literal and the right-hand side is either empty or all the B,’s are positive literals.
Let G be a goal of the form C,...,C,, where the C;'s are positive literals. The Prolog search tree
for G is defined as follows:

(1) Each node of the tree is a goal (possibly empty).
(2) The root node is G.

(3) Let A,,...,A, be a node in the tree. This node has a descendent for each clause A :-
By,...,By, where A is unifiable with A;. This descendent is of the form
(By,. - -,By,A,,. . .,A)7, where 7 is the mgu for A; and A.

(4) If a node is empty, it has no descendents.
We call empty nodes success nodes.

The above definition is a special case of the definition of SLD-tree using rule R given in Lloyd,
with the computation rule R used being the Prolog rule of always chosing the leftmost goal in a node.

Definition 8.13: Let N be a node in a search tree. If N has no ancestors other than the original
goal, then the computed substitution at N is defined to be the mgu used to obtain N. Otherwise the
computed substitution at N is defined to be 70, where 7 is the computed substitution at N’s parent,
and o is the mgu used to obtain N. If N is a success node, the computed substitution at N is called
an answer substitution. :

A Prolog derivation of G terminates if the search tree for G is finite. Moreover, if ¢ is the sub-
stitution at the leftmost success node, that is the substitution returned by the program.

It is not true that if the Prolog derivation of G terminates, then the corresponding search tree is
finite. All that is required is that the part of the tree to the left of the first success node be finite.
However, the finiteness of the search tree can be used to show that other Prolog derivations ter-
minate. Suppose, for example, we know that the search tree of a goal G is finite, and we are
attempting to derive the goal (G,H). Prolog finds the substitution ¢ at the leftmost success node of G

30

NRL REPORT 9131

and attempts to derive Ho. If that fails, it tries again with Hr, where 7 is the substitution at the next
success node of G and so on, until it either succeeds or has searched the entire tree. For this reason
the search tree is a valuable tool for proving termination of Prolog programs by induction.

Let us now extend the concept of search tree to include goals that may be more general
expressions. The definition we use is essentially the definition of SLDNF-tree given in Lloyd with
some slight modifications for our own purposes.

Definition 8.14: Let P be a program and let G be an expression. The search tree family of G is
defined as follows. We construct a ‘father tree’’ with the following properties:

(1) Each node of the tree is a goal.
(2) The root node is G.
(3) If Aq,...,Ay is a node in the tree then one of the following occurs:

[a] whenever A; is a positive literal, then the children of the node are calculated as in the
definition of search tree;

[b] whenever A; = (B | C), then the children of A (,...,A are the children of B,A,,...,Ay,
followed by the children of C,A,,...,A,, and;

[c] whenever A; = not(B) then if B has a finite search tree with no success nodes, the child
of Aq,...,Apis Ay,...,Ay. Otherwise Aj,...,Ay is a failure node.

The search tree family of G is defined to be the union of the singleton set containing the *‘father
tree’” with the set of search tree families of all goals B such that not(B),A,...,A; is a node in the
““‘father tree.”’

We say that the search tree family of G is finite if it consists of a finite number of search trees, all of
which are finite.

Lemma 8.15: Let A, B, C, and D be goals. Then

(1) (A, (B|C), D) has a finite search tree family if and only if (A, B, D) and (A, C, D) have
finite search tree families, and;

(2) (A, not(B), C) has a finite search tree family if (A, C) and (A, B, C) have finite search
tree families.

Moreover, ¢ is a substitution at a success node of (A,B,D) or (A,C,D) if and only if it is a sub-
stitution at a success node of (A,(B|C),D). If ¢ is a substitution at a success node of (A,C), then it is
a substitution of a success node of (A, not(B), C).

Proof: In the first case, the father search tree of (A, B, D), (A, C, D), and (A, (B | C), D) are iso-
morphic to the search trees obtained by taking the father search tree for A and appending to each suc-
cess node with substitution ¢ the father search trees for (B,D)os, (C,D)o and the trees for both (B,D)o
and (C,D)g, respectively. The remaining search trees in the family are obtained by taking the union
of the search tree families of (A, B, D) and (A, C, D), minus the parent search trees. Thus both
results follow.

31

C. A. MEADOWS

In the negation case, the father search tree of (A, not(B), C) is isomorphic to the tree obtained
by taking the father search tree of A and appending to each success node with substitution ¢ such that
Bo fails the father search tree of Co. This is isomorphic to a subtree of the father search tree of
(A,C), and each substitution 7 at a success node of this tree is also a substitution at a success node of
(A,C). The remaining search trees in the family are a subset of the union of the search tree family of
each Bo such that (B, C)o is a node of (A, B, C) and the search tree family of (A, C).

The proof of termination is by induction on a partial order on goals defined as follows:

Definition 8.16: Let G and H be positive literals. Let < be a trace order. We say that G < H if
level(G) < level (H) or level(G) = level (H), all “‘in’” arguments of both H and G are ground, and
for each ““in”’ argument T of G of type ‘‘trace,”’ there is an ‘‘in’’ argument S of H of type ‘‘trace”’
such that S > T.

Lemma 8.17: Let G :- A,,...,A, be an admissible simple clause with respect to a trace order <.
Let 7 be a substitution such that all ““in’” arguments of G7 are ground and (A,...,A)7 is ground.
Then all “‘in’” arguments of A, 7 are ground, and A,,;7 < G 7. Moreover, if t = k, then G7 is
ground, and, if G = equiv(Y,X), then Y7 > Xr.

Proof: That all ““in’” arguments of A,, ;7 are ground follows directly from the definition of variable
admissibility. Thus we only need to prove that A, ;7 < Gr. If level(A,,;) < level(G), the result
holds by definition. Suppose that level(A,, ;) = level(G).

Let w be the occurrence of an ‘‘in’” argument X in A,,;. By the definition of list admissibility,
there is an “‘in’” argument Y of G so that N(w,Y) *> N(w,X). By definition of the predicates *‘lis-
tappend’’ and ‘‘equal,”’ and the fact that 7 makes all members of N(w,Y) and N(w,X) ground, the
substitution 7 sets all members of concat(N(w,Y))7 equal to each other and to Y7, and all members of
concat(N(w,X))7 equal to each other and to X7. Since there is a list L in N(w,Y) and a list L' in
N(w,X) such that concat(L) > concat(L’), we have Y7 = concat(L7) > concat(L’'7) = X7, and thus
Yr > X7,

The proof of the second part of the lemma is similar.

We are now ready to prove termination properties of translated specifications. We will not
attempt to prove any properties of proofs of goals of level 0, since many of them are system predi-
cates, and the remaining level O goals are not defined in terms of the rules of the grammar. We will,
however, make the following assumptions about goals of level O:

Let G be a predicate of level 0, and let ¢ be a substitution such that all *‘in’” arguments of Go

are ground. Then Go has a finite proof tree family, and Go7 is ground for each answer substi-

tution 7.

Theorem 8.18: Let S be a specification admissible with respect to a trace order <, and let P be its
translation. Suppose that, whenever G is a goal of level 0 with all “‘in’’ arguments ground, then G
has a finite search tree family such that Go is ground for each answer substitution ¢. Then, if G is a
goal of level > O with all “‘in”” arguments ground,

(1) G has a finite search tree family;

(2) Go is ground for each answer substitution ¢, and;

3) If G = equiv(X,Y), and p is an answer substitution, Xp > Yp.

32

NRL REPORT 9131

Proof. The proof is by induction on the partial order on goals. Suppose that G is a goal of level >
0, that all *‘in’” arguments of G are ground, and that (1) and (2) hold for all goals less than G and (3)
holds for all ‘‘equiv’’ goals less than G.

We now consider the search tree family of G. Every child node of G is obtained by the unifica-
tion of G with a goal H of some clause H :- K in P. Let 7 be the substitution achieving this unifica-
tion. Then all ‘“in’’ arguments of Hr are ground, and we wish to prove that K7 has a finite search
tree family.

We have two cases to consider, the case in which the clause is admissible, and the case in which
the clause is one defining “‘1,”’ ““v,”” “‘tequiv,”” or ‘‘dequiv’’ in the Prolog utility code.

We consider the admissible case first. Suppose that H :- K is not simple. Then either K = A,
not(B), C or K = A, (B | C), D. By the definition of admissibility, in the first case H :- A, C and
H :- A, B, C are admissible clauses, and in the second case H :- A, B, D and H :- A, C, D are
admissible clauses. Moreover, by Lemma 8.15 it is enough to show the proof tree family of (A, C)r
and (A, B, C)r are finite in order to show that the proof tree family of (A, not(B), C)7 is finite, and
it is enough to show that the proof tree families of (A, B, D)7 and (A, C, D)r are finite in order to
show that the proof tree family of (A, (B | C), D)r is finite. By repeated application of Lemma 8.15,
we eventually can reduce the problem to proving the finiteness of the proof tree families of a set of
goals K7 through K7, where each K, consists of positive literals and the clauses H :- K; are admissi-
ble. In other words, we are reduced to proving the assertion in the case that H :- K is a simple
admissible clause. We prove the result by showing that K = (A,...,A}) becomes ground at each
success node, and then using Lemma 8.17.

The proof is by induction on r, for 1 < r < k. For each such r, one of two things can occur.
Either the search tree of (A;,...,A)7 has no success nodes, in which case the search tree of
(Aq,. . .,Ap7 is the search tree of (Ay,...,A))7, or the search tree of (A;,...,Ap)7 is the search tree of
(Ay,. . ., A7, with the search tree of (A,,,...,AQp appended to each success node, where p is the
substitution at that node.

By Lemma 8.17, all ““in’> arguments of A, are ground, and A;7 < H7 = G7. Since the defini-
tion of the partial order on goals depends only upon the level of the goals and the ordering of the
““in” arguments, and the substitution 7 does not change the ground ‘‘in’’ arguments of G, we have
A7 < G. Thus, by the induction hypothesis, A;7 has a finite search tree, with all ‘“‘in’’ arguments
ground at each success node.

Suppose that we have shown that (A;,...,A)7 has a finite search tree, and at each success node,
(Ay,. . .,ADp is ground. We wish to show that A, ;u has a finite search tree and that at each success
node, (A,,...,A; p is ground, where p is the computed substitution of that node. Since
(Aq,...,App is ground, we have (A;,...,Apu = (A,...,Ap)p. Thus all that remains to be shown is
that

(1) A;.p has a finite search tree;
(2) A,,p is ground.
By Lemma 8.17, all “‘in’’ arguments of A ,;p are ground and A, ;p < Gp, and hence A, p

< G. Thus, by the induction hypothesis on goals, A, ;s has a finite search tree, and all arguments
of A, p are ground.

33

C. A. MEADOWS

We have now shown, by induction on r, that the search tree of (A;,...,A))7 is finite and that
(Aq,...,App is ground at each success node (where p is the substitution at that node). We can thus
conclude, by Lemma 8.17, that G is ground at each success node, and-if p is a substitution at a suc-
cess node, and G = equiv(X,Y), then Xu > Ypu.

The case in which H :- A,,...,A; is not admissible remains to be proved. We will prove the
result for the clause defining legality; the other clauses are essentially the same.

The clause defining legality is given as follows:
I(T) :-

append(U,[W|V],T),
isnf(V),
equiv([W|V],X),
append(U,X,S),

1(S).

If we keep in mind that ‘‘append(A,B,C)”’ is merely the definition of ‘‘listappend([A,B],C),”
we see that the clause

I(T) :-

append(U,[W|V],T),
isnf(V),
equiv([W|V],X),
append(U,X,S).

is admissible. Thus, by the reasoning given by the proof of termination in the admissible case, we
have that

(append(U,[W|V],T),
isnf(V),
equiv([W|V],X),
append(U,X,S))7

has a finite proof tree such that all arguments are fully instantiated at each success node, and if 7 is
the substitution given at a particular success node, that concat(X)w < concat([W|V])x. Hence by
Condition 3 on the definition of trace order (Definition 6.4), we have concat([U,X])m < concat
([U,[W|V]])w. (This is the only part of the termination proof in which Condition 3 is used.) Since
St = concat([U,X])w and Tw = concat([U,[W|V]])w, we have St < Tx. Thus I(S)r < I(T)r, and
by the induction hypothesis 1(S)x has a finite search tree.

The proofs for ‘‘v,”” ‘‘dequiv,”” and ‘‘tequiv’’ are similar, and we omit them.
9. SOUNDNESS OF NEGATION

We have characterized a set of trace assertions that can be translated into terminating Prolog
programs, and we have provided a proof that such programs terminate, given the appropriate input.

However, we have not yet guaranteed the soundness of such programs against problems that can arise
from the definition of negation used in Prolog.

34

NRL REPORT 9131

As an example of what can go wrong, consider the following from Lloyd [9]:

q(a).
p(b).

?- not(q(X)), p(X).
?- p(X), not(q(X)).

Prolog will return ‘‘no’’ to the first question, and ‘‘yes’’ to the second one. This is because, in order
to answer the first question, Prolog attempts to verify that there exists no X such that q(X) holds, and
fails, while, in order to answer the second question, Prolog finds an X such that p(X) holds (namely
X = b) and then verifies that q(b) does not hold. Thus in the first case, the question is ‘‘is there no
X such that q(X) holds, and is there an X such that p(X) holds,”” while in the second case, the ques-
tion is ‘‘is there an X such that p(X) holds and q(X) does not hold.”’

One solution to this problem is to insist that all negated literals be ground at the time they are
being proved. In Ref. 9 it is shown that a computation rule that guarantees this property is sound
with respect to negation. However, a requirement may prove to be too restrictive. At times a user
may want to ask such a question such as “‘is it true that there is no X such that q(X) holds?”’ We
note however, that the query ‘‘not(q(X)), p(X)”’ is semantically identical to the query °‘not(q(Z)),
p(X)”’ as far as Prolog is concerned, and the meaning of the second query is clear to the user. Thus
it makes sense to relax the restriction to the requirement that, if the program attempts to prove
“‘not(B)’’ at a given node in a proof tree, and some variables appearing in ‘‘not(B)’’ are not instan-
tiated to ground at that point, then those variables do not appear in any descendants of that node.

Such a property can be guaranteed with respect to the Prolog computation rules by the use of
assertions that satisfy the following requirement, which we call ‘‘negation admissibility.”’

Definition 9.1: A negation trace assertion is negation admissible if one of the following holds:
(1) The assertion is simple.

(2) The assertion is of the form A& B | C) & D-> E,and A& B & D->Eand A& C & D
-> E are both negation admissible.

(3) The assertion is of the form A & not(B) & C -> E, where

[a] whenever a variable appears in B, then it either appears in A or in an ‘‘in”’ argument of E,
or it does not appear in C; and

[b] A& C-> Eand A & B &C -> E are both negation admissible.
(4) The assertion is of the form A & (if B then C) & D -> E, where

[a] whenever a variable appears in B or C, then it either appears in A or in an ‘‘in’’ argument
of E, or it does not appear in D; and

[b] A&D->E, A&B&D->E,and A& B & C & D -> E are all negation admissible.
One can then verify that, if a variable appears inside a negation, either it is ground when it is

the term in which it appears inside the negation is being proved, or it is never used again after of the
negation.

35

C. A. MEADOWS

Negation admissible specifications, while logically sound, may still be open to misinterpretation
by the user, since it is not made explicit which variables are to be universally quantified, and which
are to be ground at the time they are called. However, it is a simple matter to allow the specification
writer to declare explicitly which variables are to be universally quantified.

10. CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

In this report we have presented the problem of writing trace specifications so that they can be
implemented correctly as Prolog programs. We have presented a grammar for trace specifications
that can be executed as terminating Prolog programs, an algorithm for interpreting such specifications
in Prolog, and a proof that the resulting programs terminate. We have also indicated how the prob-
lems arising from the unsoundness of the Prolog definition of negation can be avoided.

So far, the translator has been used on relatively small-sized specifications, consisting of about
25 clauses at most. Experience with some larger specifications of real-life systems suggests that
several modifications need to be made to the translator before it can be scaled up. One of these is to
allow specifications to use other, lower level specifications. For example, one could define a normal
form trace for a binary tree as a trace that satisfies the definition of normal form for a tree and also
has some other properties. One could also use such a capability to allow the user to define his or her
own trace predicates. Such user-defined predicates, for example, turned out to be very useful in a
specification of a multilevel secure message system [10].

Another hurdle that the translator must overcome before being usable for large-scale specifica-
tions is the complexity of the definition of admissibility. Although admissibility is relatively easy to
verify for short clauses, more complex clauses containing many instances of nested nots, ors, and if-
thens could be hard to check. One method of making admissibility easier to handle would be to intro-
duce software to help the user keep track of the variables and arguments that must be considered at a
particular point in the specification, possibly incorporating it in an interactive text editor. We note
here that a straightforward implementation of the definition of admissibility would probably not be
practical, since it would result in an algorithm whose run-time would be exponential in the number of
nots, ors, and if-thens. Thus it would be necessary to develop more efficient algorithms for keeping
track of the variables and arguments necessary to guarantee admissibility.

A third area of concern lies in the efficiency of translated programs. In the interest of ease of
verifiability, we have up to this point avoided using the various control features of Prolog (in particu-
lar “‘cut’’) that have the potential of introducing unsoundness. However, lack of control features
could make the translated specifications unacceptably slow. Thus it is necessary to investigate logi-
cally sound methods of introducing control features into translated specifications. This in turn creates
a need for a more rigorous definition of the semantics of the translated programs than the rather infor-
mal one we have given in this report.

Another possible extension of the program, unrelated to the problem of upscaling, is to give it
the capability of verifying consistency of specifications. A specification can be inconsistent in one of
three possible ways: it can specify a trace as being both legal and illegal, it can specify a trace as
being equivalent to more than one normal form trace, or it can assign to a trace two different values.
The restriction to Horn clauses in Prolog makes the first kind of inconsistency impossible; a trace is
illegal if and only if it satisfies no definition of legality. The presence or absence of the second and
third kinds of inconsistency can be verified for individual traces by using the system as is described in
this report; one simply uses ‘‘v(T,X)”” or ‘‘dequiv(T,S)”’ followed by the ‘‘;’” command. But the
system does not tell the user when a given specification is consistent, that is, when no traces with two
different values exist. Thus one further extension to the system could be a means of analyzing the

36

NRL REPORT 9131

definitions of value and equivalence given in a specification to determine whether or not they give rise
to inconsistencies.

11. ACKNOWLEDGMENTS

I thank Thor Bestul for his comments and John McLean and David Mutchler for their comments

on an earlier version of this report.

12. REFERENCES

i.

10.

A.W. Bartussek and D.L. Parnas, ‘‘Using Traces to Write Abstract Specifications for Software
Modules,”” UNC Rep. TR 77-012, University of North Carolina, Chapel Hill, NC, 1977.

J.D. McLean, ‘“A Formal Method for the Abstract Specification of Software,”” J. ACM 3i,
600-627 (1984).

J.K. Dixon, J.D. McLean, and D.L. Parnas, ‘‘Rapid Prototyping by Means of Abstract Module
Specifications Written as Trace Axioms,”” ACM SIGSOFT Eng. Notes T, 45-49 (1982).

J.D. McLean, D.M. Weiss, and C.E. Landwehr, ‘‘Executing Trace Specifications Using Pro-
log,”” NRL Report 8940, 1986.

W.F. Clocksin and C.S. Mellish, Programming in Prolog (Springer-Verlag, New York, 1981).

D.M. Hoffman, Trace Specification of Communication Protocols, thesis, University of North
Carolina, Chapel Hill, NC, 1984.

D.M. Hoffman and R. Snodgrass, ‘‘Trace Specifications: Methodology and Models,”’ Techni-
cal report, 1985.

R.E. Griswold and M.T. Griswold, The Icon Programming Language (Prentice-Hall, Engle-
wood Cliffs, NJ, 1983).

J.W. Lloyd, Foundations of Logic Programming (Springer-Verlag, New York, 1984).

C. Cross, A Trace Specification of the MMS Security Model, manuscript, 1987, to be published
as an NRL Report.

37

